Molecular determinants of sporulation in Ashbya gossypii.
نویسندگان
چکیده
Regulation of development and entry into sporulation is critical for fungi to ensure survival of unfavorable environmental conditions. Here we present an analysis of gene sets regulating sporulation in the homothallic ascomycete Ashbya gossypii. Deletion of components of the conserved pheromone/starvation MAP kinase cascades, e.g., STE11 and STE7, results in increased sporulation. In kar3 mutants sporulation is severely reduced, while deletion of KAR4 as well as of homologs of central Saccharomyces cerevisiae regulators of sporulation, IME1, IME2, IME4, and NDT80, abolishes sporulation in A. gossypii. Comparison of RNAseq transcript profiles of sporulation-deficient mutants identified a set of 67 down-regulated genes, most of which were up-regulated in the oversporulating ste12 mutant. One of these differentially expressed genes is an endoglucanase encoded by ENG2. We found that Eng2p promotes hyphal fragmentation as part of the developmental program of sporulation, which generates single-celled sporangia. Sporulation-deficient strains are arrested in their development but form sporangia. Supply of new nutrients enabled sporangia to return to hyphal growth, indicating that these cells are not locked in meiosis. Double-strand break (DSB) formation by Spo11 is apparently not required for sporulation; however, the absence of DMC1, which repairs DSBs in S. cerevisiae, results in very poor sporulation in A. gossypii. We present a comprehensive analysis of the gene repertoire governing sporulation in A. gossypii and suggest an altered regulation of IME1 expression compared to S. cerevisiae.
منابع مشابه
Developmental Growth Control Exerted via the Protein A Kinase Tpk2 in Ashbya gossypii.
Sporulation in Ashbya gossypii is induced by nutrient-limited conditions and leads to the formation of haploid spores. Using RNA-seq, we have determined a gene set induced upon sporulation, which bears considerable overlap with that of Saccharomyces cerevisiae but also contains A. gossypii-specific genes. Addition of cyclic AMP (cAMP) to nutrient-limited media blocks sporulation and represses t...
متن کاملUtilization of xylose by engineered strains of Ashbya gossypii for the production of microbial oils
BACKGROUND Ashbya gossypii is a filamentous fungus that is currently exploited for the industrial production of riboflavin. The utilization of A. gossypii as a microbial biocatalyst is further supported by its ability to grow in low-cost feedstocks, inexpensive downstream processing and the availability of an ease to use molecular toolbox for genetic and genomic modifications. Consequently, A. ...
متن کاملFilamentous growth in Eremothecium fungi Molecular characterization of the Ashbya gossypii ARF3 module
متن کامل
Ashbya gossypii beyond industrial riboflavin production: A historical perspective and emerging biotechnological applications.
The filamentous fungus Ashbya gossypii has been safely and successfully used for more than two decades in the commercial production of riboflavin (vitamin B2). Its industrial relevance combined with its high genetic similarity with Saccharomyces cerevisiae together promoted the accumulation of fundamental knowledge that has been efficiently converted into a significant molecular and in silico t...
متن کاملMolecular and functional characterization of an invertase secreted by Ashbya gossypii.
The repertoire of hydrolytic enzymes natively secreted by the filamentous fungus Ashbya (Eremothecium) gossypii has been poorly explored. Here, an invertase secreted by this flavinogenic fungus was for the first time molecularly and functionally characterized. Invertase activity was detected in A. gossypii culture supernatants and cell-associated fractions. Extracellular invertase migrated in a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 195 1 شماره
صفحات -
تاریخ انتشار 2013